If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+14t+500=0
a = -4.9; b = 14; c = +500;
Δ = b2-4ac
Δ = 142-4·(-4.9)·500
Δ = 9996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9996}=\sqrt{196*51}=\sqrt{196}*\sqrt{51}=14\sqrt{51}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{51}}{2*-4.9}=\frac{-14-14\sqrt{51}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{51}}{2*-4.9}=\frac{-14+14\sqrt{51}}{-9.8} $
| 4n-40=7{-2n+2} | | x/3+3=-7 | | 60=6000/12×r | | 5(x+3)-(2x+7)=20 | | 5n=12=75-4n | | 5x2−16=−x2+80 | | 10x-14=18-10x | | 18-3x=3x=x-6 | | −1=−0.2k | | x=9;5x-4 | | 4x-8=16-8x | | 8.4=−t3.5 | | -160=-8-4(7a-4) | | 2/5x+15=-6 | | 2x^2=12-14 | | 6=5-(2x+3) | | y/4−6=9 | | y4−6=9 | | -9q=-29 | | -123=-3(6v+5) | | 0.2m=1.4 | | 3(x)+6=21 | | 5x+-7.2=69 | | -6q=-29 | | 15=27a | | 5x+36=87 | | -4q=-80 | | -7-6(3b+8)=-199 | | 4x+7=-9x^2+6x-1 | | -22=-260+x | | -19-s+7=20+s | | 7(2+2x)–10=-24 |